HPLC Results, Lisbon, Portugal

Vanda Brotas, Rafael Mendes, Paulo Cartaxana

From the Mud to the Southern Ocean

- Microphytobenthos
- Coastal and estuarine phytoplankton
- Oceanic phytoplankton (Portugal, Antarctica, Patagonia)

General Details

- Number of samples analyzed per year: ca. 2000.
- Samples are analyzed for multiple investigators.
- Samples come from many different water types (lagoons, estuaries, open ocean) and sediment.
- Data only for our research group, do not provide for external customers.
- We analyze primarily field samples, but we also have microalgal cultures.
- Results used for research, scientific projects, PhDs and Masters, and monitoring programs.

Chromatographic Separation

Chromatographic separation with Supelcosyl **C18**:

- monomeric octadecylsilica
- dimensions 250 x 4.6 mm
- pore size 100 A
- particle size 5 μm
- surface area 170 m² g⁻¹
- carbon load 11%

Chromatographic separation with Simmetry **C8**:

- monomeric octylsilica
- dimensions 150 x 4.6 mm
- pore size 100 A
- particle size 3.5 μm
- surface area 337 m² g⁻¹
- carbon load 12.27%

Elution Gradients

C18

C8

A = methanol:water $(85:15 \text{ v/v})^*$

B = acetonitrile:water (90:10 v/v)

C = ethyl acetate

* buffered with 0.5M ammonium acetate

0 min, A 60%, B 40% 2 min, B 100% 7 min, B 80%, C 20% 17 min, B 50%, C 50% 21 min, B 30%, C 70% 28.5 min, B 30%, C 70% 29.5 min, B 100% 30.5 min, A 60%, B 40% 35 min, A 60%, B 40%

with a flow rate of 0.6 mL min⁻¹, and duration of 35 min

Kraay et al, 1992, J Phycol

A = methanol:acetonitrile:aqueous pyridine solution (50:25:25 v/v/v)

B = methanol:acetonitrile:acetone (20:60:20 v/v/v)

0 min, A 100% 20 min, A 60% 26 min, A 5% 38 min, A 5% 40 min, A 100%

with a flow rate of 1 mL min⁻¹, and duration of 40 min

INJECTION: volume of solvent that flows through the column to re-equilibrate the column to initial conditions before a sample is injected: ca 6 ml

Zapata et al, 2000. MEPS

Advantages and Disadvantages

- C18

- Cheaper, faster sample throughput, higher sensitivity.
- Does not separate Chls c and DVChla/Chla.

- C8

- Separates Chls c and DVChl
- Lower sensitivity.

Suggestion: C8 method with lower flow rate??

Fig. 7. Influence of flow rate on fucoxanthin standard (0.342 mg L⁻¹) peak area for the C_{18} and C_{8} method (mean \pm standard deviation, n=3).

Mendes et al, 2007, L&O Methods

Detection

- Photodiode Array (Shimadzu SPD-M10ADvp).
- Fluorescence Detector (Shimadzu RF-10AXL); Ex. 430 nm; Em. 670 nm.
- -We visually inspect the integration of all peaks in the chromatograms, and corrections are made, if necessary, with Class VP/LC Solution integration tools.
- Peak acceptance/rejection criteria are basically the ones provided by SeaHarre5.

Calibration

- Sigma (ChI a, b, and β -carotene) and DHI standards (all others).
- Calibration is done at or close to maximum absorption wavelength, ex: Chl a 430 nm, Fuco 448nm, Zea, 454nm.
- No internal standard used.
- We don't quantify pigments for which we don't have standards.
- We use multi-point calibration.
- Our calibration response factors are quite stable.
- We use the concentrations provided by DHI and re-measure spectrophotometrically Sigma standards.
- We dilute standards. Calibrate micropipetes regularly.

Quantification

- Usually, isomers are added to pigment area (ex: Chla).
 Sum of Chla plus closest peak of epimer and allomere.
- Quantification always by area
- We use the same integration settings for all chromatograms. We determine a min peak area, the first 6 min are not quantifiable: integration off 0-6 min.
- In order to quantify pigments: Minimum width 0.01, Threshold 1500 (area),
- We don't quantify by peak height.
- Other Stan's questions:
- ❖What volume of water do you estimate is in the filter? not addressed yet
- ❖Do you use the same injector program with samples and standards? yes

SeaHarre Samples

<u>Sample handling</u>: Samples were put in -80° C after arrival. Analysis performed Between February 16th and March 4th.

Extraction:

- 2.5 ml of 95% cold-buffered methanol (2% ammonium acetate).
- 30 s sonication bath (50W).
- 30 min at -20°C in the dark.
- centrifuge 4000 rpm ,15min, at 4°C
- filtration prior to injection (0.2 μm)

<u>Injection</u>: Immediately after extraction (maximum of 10 min. at refrigerated autoinjector, -4°C); injection volume 100 μl.

Chromatographic Separation: C8 Method

Identification of problems

Extraction as a decisive step:

- •Manual grinding is operator dependent.
- •Extraction solvent volume: Equilibrium between extraction efficiency and sample dilution

Previous underestimation due to inadequate extraction solvent volume in Estuarine phytoplankton samples

Chromatogram: example

Our Problematic chromatogram

In the past, we had problems with early eluting peaks of standards in acetone

Possible explanation:

- Distortion of early eluting peaks, when acetone is used as injection solvent with mobile phases based on methanol (Zapata & Garrido, 1991).
- Different viscosities of sample solvent and mobile phases? (Castells & Castells, 1998).

A = methanol:acetonitrile:aqueous pyridine solution

B = methanol:acetonitrile:acetone

0 min – A 100% 20 min, A 60%

When A concentration dominates the gradient, we have problems with standard mix.

Effect of water addition on peak shape

Hexanoyloxyfucoxanthin

* Our usual calibration conditions

Effect of water addition on pigment mix

 μL mixed standard

 μ L mixed standard + 10 μ L water

Comparison of Pigment Results

Co-elution of Zeaxanthin and Lutein

Signal to Noise: SNR's

 \square Alloxanthin, Chlorophyll *b* and β , β - Carotene

Alloxanthin

0.81 ng

SNR = 25

>LOD (0.09 ng)

>LOQ (0.31 ng)

Chlorophyll b

± 0.40 ng

SNR = 9

>LOD (0.17 ng)

< LOQ (0.56 ng)

β, β-Carotene

SNR = 4

Partially co-eluted with β,ε-Carotene

SNR's

 \square Chlorophyll c_2 , Fucoxanthin and Diadinoxanthin

Chlorophyll c₂

SNR = 3

<LOD (0.16 ng)

<LOQ (0.53 ng)

Fucoxanthin

0.86 ng

SNR = 12

>LOD (0.21 ng)

>LOQ (0.70 ng)

Diadinoxanthin

± 0.32 ng

SNR = 7

>LOD (0.14 ng)

<LOQ (0.46 ng)

Ideas for improving results

Standardize extraction procedures